3.2630 \(\int \frac {x^{-1-2 n}}{(a+b x^n)^2} \, dx\)

Optimal. Leaf size=78 \[ -\frac {3 b^2 \log \left (a+b x^n\right )}{a^4 n}+\frac {3 b^2 \log (x)}{a^4}+\frac {b^2}{a^3 n \left (a+b x^n\right )}+\frac {2 b x^{-n}}{a^3 n}-\frac {x^{-2 n}}{2 a^2 n} \]

[Out]

-1/2/a^2/n/(x^(2*n))+2*b/a^3/n/(x^n)+b^2/a^3/n/(a+b*x^n)+3*b^2*ln(x)/a^4-3*b^2*ln(a+b*x^n)/a^4/n

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {266, 44} \[ \frac {b^2}{a^3 n \left (a+b x^n\right )}-\frac {3 b^2 \log \left (a+b x^n\right )}{a^4 n}+\frac {3 b^2 \log (x)}{a^4}+\frac {2 b x^{-n}}{a^3 n}-\frac {x^{-2 n}}{2 a^2 n} \]

Antiderivative was successfully verified.

[In]

Int[x^(-1 - 2*n)/(a + b*x^n)^2,x]

[Out]

-1/(2*a^2*n*x^(2*n)) + (2*b)/(a^3*n*x^n) + b^2/(a^3*n*(a + b*x^n)) + (3*b^2*Log[x])/a^4 - (3*b^2*Log[a + b*x^n
])/(a^4*n)

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^{-1-2 n}}{\left (a+b x^n\right )^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{x^3 (a+b x)^2} \, dx,x,x^n\right )}{n}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {1}{a^2 x^3}-\frac {2 b}{a^3 x^2}+\frac {3 b^2}{a^4 x}-\frac {b^3}{a^3 (a+b x)^2}-\frac {3 b^3}{a^4 (a+b x)}\right ) \, dx,x,x^n\right )}{n}\\ &=-\frac {x^{-2 n}}{2 a^2 n}+\frac {2 b x^{-n}}{a^3 n}+\frac {b^2}{a^3 n \left (a+b x^n\right )}+\frac {3 b^2 \log (x)}{a^4}-\frac {3 b^2 \log \left (a+b x^n\right )}{a^4 n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 65, normalized size = 0.83 \[ \frac {-6 b^2 \log \left (a+b x^n\right )+a \left (\frac {2 b^2}{a+b x^n}-a x^{-2 n}+4 b x^{-n}\right )+6 b^2 n \log (x)}{2 a^4 n} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(-1 - 2*n)/(a + b*x^n)^2,x]

[Out]

(a*(-(a/x^(2*n)) + (4*b)/x^n + (2*b^2)/(a + b*x^n)) + 6*b^2*n*Log[x] - 6*b^2*Log[a + b*x^n])/(2*a^4*n)

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 105, normalized size = 1.35 \[ \frac {6 \, b^{3} n x^{3 \, n} \log \relax (x) + 3 \, a^{2} b x^{n} - a^{3} + 6 \, {\left (a b^{2} n \log \relax (x) + a b^{2}\right )} x^{2 \, n} - 6 \, {\left (b^{3} x^{3 \, n} + a b^{2} x^{2 \, n}\right )} \log \left (b x^{n} + a\right )}{2 \, {\left (a^{4} b n x^{3 \, n} + a^{5} n x^{2 \, n}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1-2*n)/(a+b*x^n)^2,x, algorithm="fricas")

[Out]

1/2*(6*b^3*n*x^(3*n)*log(x) + 3*a^2*b*x^n - a^3 + 6*(a*b^2*n*log(x) + a*b^2)*x^(2*n) - 6*(b^3*x^(3*n) + a*b^2*
x^(2*n))*log(b*x^n + a))/(a^4*b*n*x^(3*n) + a^5*n*x^(2*n))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{-2 \, n - 1}}{{\left (b x^{n} + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1-2*n)/(a+b*x^n)^2,x, algorithm="giac")

[Out]

integrate(x^(-2*n - 1)/(b*x^n + a)^2, x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 117, normalized size = 1.50 \[ \frac {\left (\frac {3 b^{2} {\mathrm e}^{2 n \ln \relax (x )} \ln \relax (x )}{a^{3}}+\frac {3 b^{3} {\mathrm e}^{3 n \ln \relax (x )} \ln \relax (x )}{a^{4}}+\frac {3 b \,{\mathrm e}^{n \ln \relax (x )}}{2 a^{2} n}-\frac {3 b^{3} {\mathrm e}^{3 n \ln \relax (x )}}{a^{4} n}-\frac {1}{2 a n}\right ) {\mathrm e}^{-2 n \ln \relax (x )}}{b \,{\mathrm e}^{n \ln \relax (x )}+a}-\frac {3 b^{2} \ln \left (b \,{\mathrm e}^{n \ln \relax (x )}+a \right )}{a^{4} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(-1-2*n)/(b*x^n+a)^2,x)

[Out]

(-3*b^3/a^4/n*exp(n*ln(x))^3-1/2/a/n+3/2/a^2*b/n*exp(n*ln(x))+3*b^2/a^3*ln(x)*exp(n*ln(x))^2+3*b^3/a^4*ln(x)*e
xp(n*ln(x))^3)/exp(n*ln(x))^2/(b*exp(n*ln(x))+a)-3*b^2/a^4/n*ln(b*exp(n*ln(x))+a)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1-2*n)/(a+b*x^n)^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x^{2\,n+1}\,{\left (a+b\,x^n\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(2*n + 1)*(a + b*x^n)^2),x)

[Out]

int(1/(x^(2*n + 1)*(a + b*x^n)^2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(-1-2*n)/(a+b*x**n)**2,x)

[Out]

Timed out

________________________________________________________________________________________